

Research Migration Project

Name:-THARUN D GOWDA

Title: The NEUROSPIKE CIRCUIT

The Neurospike Circuit is based on the Leaky-Integrate-and-Fire (LIF) neuron model, which is commonly used in Spiking Neural Networks (SNNs). Unlike traditional neural networks, SNNs communicate using spike trains. In this system, the timing between spikes carries information instead of relying on signal strength.

In the LIF model, input currents from several synapses pile up over time in a capacitor. This buildup raises the membrane potential (V_m)of the neuron. At the same time, a controlled leakage reduces some of the charge, simulating the natural decay seen in biological neurons. When the potential hits a certain level, the neuron fires a spike and resets its voltage to a baseline value.

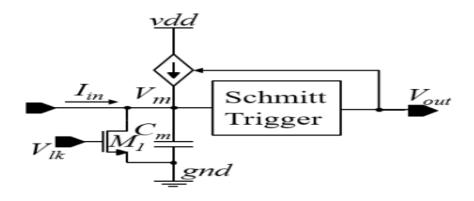


Figure 1: Leaky-Integrate-and-Fire

Figure 1 shows LIF neuron model. Here, the input current I_{in} charges the membrane capacitor $C_{m,}$ which increases the membrane voltage $V_{m.}$ The leak transistor M_1 , controlled by V_{lk} , represents the ongoing leakage of the membrane potential. When V_m reaches a certain threshold, the Schmitt trigger produces the output spike V_0 . The Schmitt trigger also offers feedback to rapidly discharge C_m , resetting V_m to $V_{reset.}$

Reference:

[1] Analog Circuit Implementation of LIF and STDP Models for Spiking Neural