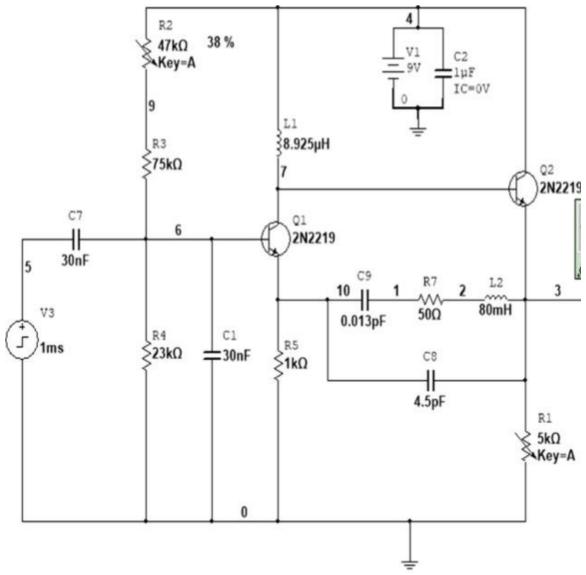
Design and Simulation of a Series Crystal Oscillator Using 2N2219 Bipolar Junction Transistors in eSim

STUDENT NAME: ROOBAK. S

COLLEGE NAME: SRI ESHWAR COLLEGE OF ENGINEERING.


Problem Statement:

Precision and stable oscillation generation using quartz crystals is essential for communication, instrumentation, and signal processing applications. Conventional oscillator circuits using op-amps or complex ICs can suffer from frequency drift and waveform distortion. The need exists for a simple, discrete transistor-based series crystal oscillator circuit that provides stable, low-distortion sine wave oscillation at a desired frequency.

Abstract:

This project focuses on the design and simulation of a series crystal oscillator using two 2N2219 Bipolar Junction Transistors and a quartz crystal modeled as an equivalent RLC circuit. Using the open-source eSim simulation platform, the circuit is analyzed for oscillation startup, frequency stability, and waveform quality. The setup demonstrates the effectiveness of discrete BJT components with crystal feedback to achieve a stable oscillation at a target frequency (e.g., 15 MHz). The simulation results include time-domain voltage waveforms verifying steady sinusoidal oscillation. This project highlights how traditional transistor-based oscillators remain relevant for low-cost, precision oscillator circuit design.

Proposed Circuit:

Conclusion:

Through detailed design and simulation, the series crystal oscillator built using 2N2219 BJTs demonstrates robust and stable high-frequency oscillations. The project serves as a foundation for understanding transistor-based crystal oscillator fundamentals and offers a replicable circuit for academic and industrial applications. The eSim platform proved effective for simulation and analysis, supporting future enhancements and real-world implementation.

References:

- 1. Rakon Ltd., "Single Transistor Crystal Oscillator Circuits," Technical Document, 2021.
- 2. P.L. Suryawanshi, V.R. Pawar, "Design of Low Power Pierce Crystal Oscillator Using CMOS Technology," International Journal of Computer Sciences and Engineering, 2018.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 4th Ed., McGraw-Hill, 2014.
- 4. Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, 7th Ed., Oxford University Press, 2015.