

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant: M.V.Rakesh gupta

Design of 4 Bit Magnitude Comparator using only logic gates

Theory:

This paper represents the design of 4 bit magnitude comparator using esim. 4 bit magnitude comparator is used to compare the two digital inputs with 4 bits each say A=A3A2A1A0 and B=B3B2B1B0, it gives the output whether the A is equal to B (A=B) or A is greater than B (A>B) or A is less than B (A<B) based on the input changes.

Lets see the cases for each A>B,A<B and A=B

A=B:

o If A3=B3, A2=B2, A1=B1, A0=B0 then the output would be A is equal to B (A=B)

The logical expression for A=B:

For A=B is (A3 EXNOR B3).(A2 EXNOR B2).(A1 EXNOR B1).(A0 EXNOR B0)

Considering X3=(A3 EXNOR B3)

X2=(A2 EXNOR B2)

X1=(A1 EXNOR B1)

X0=(A0 EXNOR B0)

A>B:

- o If A3>B3 irrespective of other bits of A and B we can say that A is greater than B (A>B)
- o If A3=B3 then starts comparing the value of A2 and B2 if A2>B2 we can say that A is greater than B (A>B).

- o If A3=B3 and A2=B2 then starts comparing the value of A1 and B1 if A1>B1 we can say that A is greater than B (A>B).
- o If A3=B3, A2=B2, A1=B1 then starts comparing the value of A0 and B0 if A0>B0 we can say that A is greater than B (A>B).

The logical expression for A>B is

For A>B: (X3X2X1A0B0')+ (X3X2A1B1')+ (X3A2B2')+(A3B3')

A<B:

- o If A3<B3 irrespective of other bits of A and B we can say that A is less than B (A<B)
- o If A3=B3 then starts comparing the value of A2 and B2 if A2<B2 we can say that A is less than B (A<B).
- o If A3=B3 and A2=B2 then starts comparing the value of A1 and B1 if A1<B1 we can say that A is less than B (A<B).
- o If A3=B3, A2=B2, A1=B1 then starts comparing the value of A0 and B0 if A0<B0 we can say that A is less than B (A<B).

The logical expression for A<B

For A<B: (X3X2X1A0'B0)+ (X3X2A1'B1)+ (X3A2'B2)+(A3'B3)

COMPARING INPUTS				OUTPUT		
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B
A3 > B3	X	X	X	Н	L	L
A3 < B3	X	X	X	L	Н	L
A3 = B3	A2 >B2	X	X	Н	L	L
A3 = B3	A2 < B2	X	X	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	Н	L	L
A3 = B3	A2 = B2	A1 < B1	X	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н
H = High Voltage Level, L = Low Voltage, Level, X = Don't Care						

Circuit diagram:

Schematic Diagram:

Source details:

Analysis Source Details Ngspice Model Device Modeling Subcircuits	
Add parameters for pulse source v2	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	20n
Enter period (seconds):	40n
Add parameters for pulse source v3	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	30n
Enter period (seconds):	60n
Add parameters for pulse source v4	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	40n
Enter period (seconds):	80n
Add parameters for pulse source v5	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	50n

Analysis Source Details Ngspice Model Device Modeling Subcircuits Add parameters for pulse source V1	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	10n
Enter period (seconds):	20n
Add parameters for pulse source v6	0
Enter initial value(Volts/Amps):	
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	60n
Enter period (seconds):	120n
Add parameters for pulse source v7	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	70n
Enter period (seconds):	140n
Add parameters for pulse source v8	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0
Enter rise time (seconds):	0.1n
Enter fall time (seconds):	0.1n
Enter pulse width (seconds):	80n
Enter period (seconds):	160n

Transient analysis:

kicadToNgspice-21

Simulation Results:

Plottings:

Input A3:

Input A2:

Input A1:

Input A0:

Input B3:

Input B2:

Input B1:

Input B0:

Output graphs:

For A=B

For A<B

For A>B

Conclusion:

Hence we compared the inputs A=A3A2A1A0 and B=B3B2B1B0 and determined whether A=B or A>B or A<B by plotting waveforms using magnitude comparator circuit in esim and hence verified

Reference:

https://eevibes.com/digital-logic-design/how-to-design-a-4-bit-magnitude-comparator-circuit/