SAFETY BUZZER IN A CAR

(WITH THE HELP OF 3 FACTORS DOOR, SEAT BELT AND KEY)

THEORY/DESCRIPTION :

The following is a review of the design and operation of a combinational logic circuit using AOI logic. This design controls the safety buzzer in a car and is designed to the following specifications:

The buzzer is ON whenever the door is open OR the key is in the ignition AND the seat belt is NOT buckled.

TRUTH TABLE :

Car Buzzer – Truth Table			
Seat Belt	Key	Door	Buzzer
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Now according to the truth table our logical equation for buzzer becames, (A= seat belt, B= key,c= door)

 $\overline{A}\overline{B}C{+}\overline{A}B\overline{C}{+}\overline{A}BC{+}A\overline{B}C{+}ABC$

We will try to minimize it,

Start $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

Apply the Distributive Law: AB+AC = AB+C $\overline{A}C(\overline{B}+B)+\overline{A}B\overline{C}+A\overline{B}C+ABC$

Apply the Complement Law: $A + \overline{A} = 1$ $\overline{A}C1 + \overline{A}B\overline{C} + A\overline{B}C + ABC$

Apply the Identity Law: A1 = A $\overline{AC} + \overline{ABC} + A\overline{BC} + ABC$

Apply the Distributive Law: AB+AC = AB+C $\overline{A}(B\overline{C}+C)+A\overline{B}C+ABC$ Apply the Distributive Law: AB+AC = AB+C $\overline{A}(B+C)+AC(\overline{B}+B)$

Apply the Complement Law: $A+\overline{A} = 1$ $\overline{A}(B+C)+AC1$

Apply the Identity Law: A1 = A $\overline{A}(B+C)+AC$

Apply: Distribution $\overline{AB} + \overline{AC} + AC$

Apply the Distributive Law: AB+AC = AB+C $\overline{A}B+C(\overline{A}+A)$

Apply the Complement Law: $A+\overline{A} = 1$ $\overline{A}B+C1$

Apply the Identity Law: A1 = A $\overline{AB}+C$

Hence,

Buzzer= seat_belt.key + door

E-SIM CIRCUIT DIAGRAM WITH APPROPRIATE RESULT :

**instead of not gate nand is used as not.

1.for seat_belt

2.for key ignition

3.for door

4.for buzzer

CONCLUSION:

With the help of only one and and or gate along with not gate we can logically implement such safety buzzer circuit.

REFERENCES:

https://www.lancasterschools.org/cms/lib/NY19000266/Centricity/Domain/10 55/CombinationalLogicOverview.pdf

