Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of Participant: Karthik Raj R
Project Guide: Dr. Maheswari. R

Title: Design of Half Adder using 4×1 multiplexer as a subcircuit

Theory:

A half adder is used to add two single-digit binary numbers and results into a two-digit output. It is named as such because putting two half adders together with the use of an OR gate results in a full adder. In other words, it only does half the work of a full adder. This circuit has two inputs and two outputs. The two inputs A, B denote the two numbers to be added respectively. The two outputs, C and D represent the sum and carry, respectively.
We can implement a half adder using two 4×1 multiplexers.
The truth table for adding two single digit binary digits A and B is shown below:

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We can use the multiplexers to get the sum and carry as shown below:
Sum:

Carry:

Circuit Diagrams: -

This is the main functional circuit schematic for the half adder which uses a subcircuit (4×1 multiplexer):

The structure of the 4×1 multiplexer subcircuit used:

The symbol defined for the subcircuit:

Result:

Ngspice Plots:

Inputs:

V

V
V.6

V
1.0

Outputs:

Sum:

Borrow:

Python Plots:

Inputs:
A

B

F

Outputs:

Sum:

Borrow:

References: -

- https://www.tutorialspoint.com/digital_circuits/digital_circuits_multiplexers.htm
- https://www.geeksforgeeks.org/half-adder-in-digital-logic/
- https://www.techopedia.com/definition/7509/half-adder

