

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the Participant: Shubhangi Agrawal (20BCE1161)

Project Guide: Dr R. Maheshwari

Title of the Circuit: Implementation of AND gate using NOR gates

Theory:

An AND gate gives a 1 output when both inputs are 1. Therefore, an AND gate is made by inverting the inputs of a NOR gate. Again, note that a NOT gate is equivalent to a NOR with its inputs joined.

From De Morgan's theorems: $(A+B)' = A'B' \Longrightarrow (A'+B')' = A''B'' = AB$

So, give the inverted inputs to a NOR gate, obtain AND operation at output

CIRCUIT DIAGRAM:

Truth Table:

Truth Table			
Input A	Input B	Output Q	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

e-Sim Schematic:

Simulation Results:

- 1. Python Waveforms:
- <u>A</u>

<u>A.B</u>

NG Spice Waveforms:

<u>A</u>

<u>A.B</u>

Transient Analysis:

Select Analysis Type	DC	TRANSIENT
C Transient Analysis		
Start Time	0	Sec ×
Step Time	20	ms
Stop Time	20	Sec ×

Analysis Source Details Ngspice Model Device Modeling Subcircuits	
Enter delay time (seconds):	10
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	20
Enter period (seconds):	40
Add parameters for pulse source v2	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	5
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	10
Enter period (seconds):	20

Conclusion:

Thus, the circuit has been designed and verified.

References:

https://www.iitr.ac.in/departments/PH/uploads/Teaching%20Laboratory/Electronics/5.Interconvers ion%20of%20Universal%20Gates%20and%20De%20Morgans%20Theorem.pdf

https://en.wikipedia.org/wiki/NOR_logic