Title of the Experiment:

Construction and working of a Full Adder using 3x8 decoder.

Theory:

A full adder circuit takes three inputs and gives two outputs. It provides the sum and carry and is implemented using a 3x8 decoder in our circuit.

We give our 3 pulse inputs to the 3x8 decoder. We came to the conclusion that

Sum= Σ m(1,2,4,7)

Carry= Σ m(3,5,6,7)

Our final sum will be the OR operation of 2^{nd} , 3^{rd} , 5^{th} and 8^{th} output of our decoder and final carry will be the OR operation of 4^{th} , 6^{th} , 7^{th} and 8^{th} output of the decoder.

Schematic Diagram:

3x8 decoder schematic:

Full adder using 3x8 decoder:

Python plots:

References:

https://www.deldsim.com/study/material/51/full-adder-function-using-38-decoder/