Title of the Experiment:

Construction and working of a Full Adder using 3×8 decoder.

Theory:

A full adder circuit takes three inputs and gives two outputs. It provides the sum and carry and is implemented using a 3×8 decoder in our circuit.

We give our 3 pulse inputs to the 3×8 decoder. We came to the conclusion that
Sum $=\Sigma m(1,2,4,7)$
Carry $=\Sigma m(3,5,6,7)$
Our final sum will be the OR operation of $2^{\text {nd }}, 3^{\text {rd }}, 5^{\text {th }}$ and $8^{\text {th }}$ output of our decoder and final carry will be the OR operation of $4^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$ output of the decoder.

Schematic Diagram:

3×8 decoder schematic:

Full adder using 3×8 decoder:

Python plots:

References:

https://www.deldsim.com/study/material/51/full-adder-function-using-38-decoder/

