

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant: Gokul Jayan (20BCE1249)

Project Guide: Dr R. Maheswari

Title of the circuit: 3-Bit Synchronous Down Counter

Theory/Description:

In synchronous down counter with JK Flip-Flops, a single clock pulse drives all JK flip-flops. Circuit becomes complex as the number of states increases. Speed is high.

The 3-bit asynchronous up counter consists of 3 JK flip flops and 1 AND gate. The output conditions are $Q_2 \, Q_1 \, Q_0$

The output of the flip flops is a binary number equivalent to the number of clock pulses received. The output conditions are as shown in the truth table.

Counter State	Q2	Q1	Q0
7	1	1	1
6	1	1	0
5	1	0	1
4	1	0	0
3	0	1	1
2	0	1	0
1	0	0	1
0	0	0	0

e-Sim Required Components

Synchronous Down counter			
Component	Туре		
d_jkff	JK flip flop		
pulse	Clock		
DC	DC Source for logic high		
AND Gate	Logic Gates		

e-Sim Schematic

Simulation Result

(i) NG Spice Waveforms:

clk (Clock Pulse)

m (Logic High)

Q₂ (MSB)

(ii) Python Waveforms (for better visualization)

clk

m (Logic High)

Q₂ (MSB)

Simulation Parameters for reference:

Analysis	Source Details	Ngspice Model	Device Modeling	Subcircuits	
Select Ar	alysis Type	DC		NSIENT	
Transier	nt Analysis				
Start Tin	ne	0 Sec		\sim	
Step Tim	ie	10	ms		\sim
Stop Tim	ie	85	Sec		\sim

Transient Analysis

Source Details

dToNgspice	-5				đ
Analysis	Source Details	Ngspice Model	Device Modeling	Subcircuits	
_ Add para	ameters for DC sour	ce v1			
Enter va	Enter value(Volts/Amps):			5	
Add para	ameters for pulse so	ource v2			
Enter in	Enter initial value(Volts/Amps):		0		
Enter p	Enter pulsed value(Volts/Amps):			5	
Enter d	Enter delay time (seconds):			5	
Enter ri	Enter rise time (seconds):			0	
Enter fa	Enter fall time (seconds):			0	
Enter p	Enter pulse width (seconds):			5	
Enter p	eriod (seconds):			10	
					Convert

Conclusion:

Hence, designed and verified 3-bit synchronous down counter using JK flip flops on eSim

References:

https://www.geeksforgeeks.org/3-bit-synchronous-down-counter/ https://www.tutorialspoint.com/digital_circuits/digital_circuits_counters.htm