



# **Circuit Simulation Project**

https://esim.fossee.in/circuit-simulation-project

Name of Participant: UTUKURI GEYARKA S NIKHILESH

Project Guide: Dr. MAHESWARI. R

Title of the Project: -

# **Design of Full Subtractor using Nand gates**

# Theory/Description: -

Full subtractor is a combinational circuit which is used to perform two binary digits subtraction. Full subtractors can be used for different microcontrollers for arithmetic subtraction, timers and the program counter. These are used in processors to compute tables, addresses and also useful for Digital Signal Processing and networking based systems.

Full subtractor has three inputs namely A, B, Bin and two outputs namely Diff, Borrow. Here, the inputs indicate minuend, subtrahend and previous borrow for A, B and Bin respectively whereas the two outputs are denotes difference and borrow output for Diff and Borrow.

Full subtractor can be designed using basic logic gates like OR, AND, XOR. This circuit can also be done designed by using only universal logic gates like using only NAND gates or only NOR gates.

Expressions for outputs in full sutractor:

- = Bin(A'B' + AB) + Bin'(AB' + A'B)
- = Bin( A XNOR B) + Bin'(A XOR B)
- = Bin (A XOR B)' + Bin'(A XOR B)
- = Bin XOR (A XOR B)
- = (A XOR B) XOR Bin

#### Truth Table for Full subtractor circuit:

| Α | В | Bin | Diff | Borrow |  |  |  |
|---|---|-----|------|--------|--|--|--|
| 0 | 0 | 0   | 0    | 0      |  |  |  |
| 0 | 0 | 1   | 1    | 1      |  |  |  |
| 0 | 1 | 0   | 1    | 1      |  |  |  |
| 0 | 1 | 1   | 0    | 1      |  |  |  |
| 1 | 0 | 0   | 1    | 0      |  |  |  |
| 1 | 0 | 1   | 0    | 0      |  |  |  |
| 1 | 1 | 0   | 0    | 0      |  |  |  |
| 1 | 1 | 1   | 1    | 1      |  |  |  |

Here, A, B, Bin are inputs and Diff, Borrow are outputs.

Circuit for Full Subtractor using Nand gates:



# Schematic Diagram:

The circuit schematic for Full Subtractor using Nand gates in eSim is as shown below:



#### Source details:

| Analysis | Source Details                     | NgSpice Model | Device Modeling | Subcircuits |          |
|----------|------------------------------------|---------------|-----------------|-------------|----------|
| Add pa   | rameters for pulse s               | ource v1      |                 |             | <b>^</b> |
| Enter    | initial value(Volts/Am             | os):          |                 |             | 0        |
| Enter    | pulsed value(Volts/A               | nps):         |                 |             | 5        |
| Enter    | delay time <mark>(</mark> seconds) | :             |                 |             | 20       |
| Enter    | rise time (seconds):               |               |                 |             | 0        |
| Enter    | fall time (seconds):               |               |                 |             | 0        |
| Enter    | pulse width (seconds               | ):            |                 |             | 20       |
| Enter    | period (seconds):                  |               |                 |             | 40       |

| Analysis | Source Details         | NgSpice Model | Device Modeling | Subcircuits |   |
|----------|------------------------|---------------|-----------------|-------------|---|
| _ Add p  | arameters for pulse s  | ource v2      |                 |             | ^ |
| Enter    | initial value(Volts/Am | ps):          |                 | 0           |   |
| Enter    | pulsed value(Volts/A   | nps):         |                 | 5           |   |
| Enter    | delay time (seconds)   | :             |                 | 10          |   |
| Enter    | rise time (seconds):   |               |                 | 0           |   |
| Enter    | fall time (seconds):   |               |                 | 0           |   |
| Enter    | pulse width (second    | ):            |                 | 10          |   |
| Enter    | period (seconds):      |               |                 | 20          |   |

| C Add parameters for pulse source v3 |    |
|--------------------------------------|----|
| Enter initial value(Volts/Amps):     | 0  |
| Enter pulsed value(Volts/Amps):      | 5  |
| Enter delay time (seconds):          | 5  |
| Enter rise time (seconds):           | 0  |
| Enter fall time (seconds):           | 0  |
| Enter pulse width (seconds):         | 5  |
| Enter period (seconds):              | 10 |

#### <u>Analysis:</u>

| Transient Analysis |    |       |   |
|--------------------|----|-------|---|
| Start Time         | 0  | Sec 🔻 |   |
| Step Time          | 10 | ms    |   |
| Stop Time          | 40 | Sec 🗸 |   |
| (                  |    | )     | ۷ |

# Simulation Results :

# 1) <u>Ngspice plots:</u>

### Input waveforms:

<u>A:</u>





### <u>Bin:</u>

| 🔳 tra | I tran i." < clusters/hpldesktop/tesim/design_of_full_subtractor_using_nand_gates/design_of_full_subtractor_using_nand_gates.cir |      |    |    |     |      |        |             |            |    |       |       |       |       | -  | ٥    | ×    |    |       |       |    |      |     |      |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------|------|----|----|-----|------|--------|-------------|------------|----|-------|-------|-------|-------|----|------|------|----|-------|-------|----|------|-----|------|----|
| V     |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       | v(bi  | n)    |    |      |      |    |       |       |    |      |     |      |    |
| 5.1   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 4.5   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 4.(   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 3.5   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 3.0   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 2.5   | 5                                                                                                                                |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 2.0   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 1.9   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 1.0   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 0.5   |                                                                                                                                  |      |    |    |     |      |        |             |            |    |       |       |       |       |    |      |      |    |       |       |    |      |     |      |    |
| 0.0   | .0 2                                                                                                                             | .0 4 | .0 | 6. | 0 8 | .0 1 | 0.0 1: | 2.0 1(<br>t | 1.0<br>ine | 16 | .0 18 | .0 20 | .0 22 | .0 24 | .0 | 26.0 | 28.0 | 30 | .0 32 | .0 34 | .0 | 36.0 | 38. | 0 40 | .0 |

<u>B:</u>

### **Output Waveforms:**

Diff:



### Borrow:



# 2) Python plots:

# Input waveforms:

<u>A:</u>









# Output waveforms:

<u>Diff:</u>



#### Borrow:



# **Conclusion:**

Thus, we have studied the design of full subtractor using nand gates using eSim and we get the appropriate waveforms.

# **References:**

- https://www.ahirlabs.com/2017/06/09/adder-and-subtractor/
- https://www.geeksforgeeks.org/full-subtractor-in-digital-logic/