Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of Participant: Siddhant Sharma
Project Guide: Dr. Maheshwari. R

Project Name: Design a Full Adder using a 3 X 8 decoder

THEORY:

A full adder is a digital circuit that performs addition. Full adders are implemented with logical gates in hardware. A full adder adds three one-bit numbers, two operands and a carry bit. The adder outputs two numbers, a sum and a carry bit. The term is contrasted with a half adder, which adds two binary digits.

Full Adder Truth Table:

Inputs			Outputs	
A	B	C-IN	Sum	C-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3 Line to 8 Line Decoder - This decoder circuit gives 8 logic outputs for 3 inputs and has a enable pin. The circuit is designed with AND and NAND logic gates. It takes 3 binary inputs and activates one of the eight outputs. 3 to 8 line decoder circuit is also called as binary to an octal decoder.

A full adder can be implemented with a 3×8 decoder :

Equating Full Adder from 3×8 decoder:

Equation for sum $S=a b{ }^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b c=\Sigma(1,2,4,7)$
Equation for carry out $C=a b+a c+b c$
$=a b\left(c+c^{\prime}\right)+a c\left(b+b^{\prime}\right)+b c\left(a+a^{\prime}\right)$
$=a b c+a b c^{\prime}+a b c+a b^{\prime} c+a b c+a^{\prime} b c$
$=a b c+a^{\prime} b c+a b{ }^{\prime} c+a b c^{\prime}=\Sigma(3,5,6,7)$

From the truth table also we can verify our calculations we can see that:
Sum $=\sum \mathrm{m}(1,2,4,7)$
Carry $=\sum \mathrm{m}(3,5,6,7)$

Equation for the input and output of Full Adders:

Logical Expression for C-OUT:
$=A^{\prime} B C-I N+A B^{\prime} C-I N+A B C-I N '+A B C-I N$
$=A B+B C-I N+A C-I N$
$=(3,5,6,7)$
Another form in which C-OUT can be implemented:
$=A B+A C-I N+B C-I N\left(A+A^{\prime}\right)$
$=A B C-I N+A B+A C-I N+A^{\prime} B C-I N$
$=A B(1+C-I N)+A C-I N+A^{\prime} B C-I N$
$=A B+A C-I N+A^{\prime} B C-I N$
$=A B+A C-I N\left(B+B^{\prime}\right)+A^{\prime} B C-I N$
$=A B C-I N+A B+A B^{\prime} C-I N+A^{\prime} B C-I N$
$=A B(C-I N+1)+A B^{\prime} C-I N+A^{\prime} B C-I N$
$=A B+A B^{\prime} C-I N+A^{\prime} B C-I N$
$=\mathrm{AB}+\mathrm{C}-\mathrm{IN}\left(\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A} \mathrm{B}^{\prime}\right)$
Therefore COUT $=\mathrm{AB}+\mathrm{C}-\mathrm{IN}(\mathrm{A} E X-O R B)$

CIRCUIT DIAGRAM:

This` is the main functional circuit schematic for the full adder which uses a 3X8 decoder:

The structure of 3×8 decoder:

Symbol used for a 3×8 Decoder:

OUTPUTS:

Python Plots:

Inputs:
A

B

C_in

Outputs:

Sum:

Carry:

Ngspice Plots:
Inputs:
A

Tran1: * c:\users\hp\esim-workspace\adders\adders.cir
$-\quad \times$

IT $\operatorname{tran1:~*~c:\ users\ hp\backslash esim-workspace\backslash adders\ adders.cir~} \quad-\quad \square \times$

C_in

Outputs:
Sum:

Carry:

References:

- http://www.exploreroots.com/dc22.html
- https://www.geeksforgeeks.org/full-adder-in-digital-logic/
- https://www.deldsim.com/study/material/51/full-adder-function-using-38-decoder/
- https://www.massey.ac.nz/~mjjohnso/notes/59233/lect2.html
- https://www.geeksforgeeks.org/combinational-circuits-using-decoder/
- https://www.youtube.com/watch?v=u863cwgdlnA

