

Circuit Simulation Project
https://esim.fossee.in/circuit-simulation-project

Name of the Participant - Ms. Sai Samyuktha N

Project Guide - Dr. Maheswari.R

Title of the Project -

Design of a 4-bit Gray to Binary code converter circuit

with Main circuit and Subciruit implementation using

eSim

https://esim.fossee.in/circuit-simulation-project

Theory

• Binary - Binary code is based on a binary number system in which there are

only two possible states, off and on, usually symbolized by 0 and 1.

• Gray code - Gray code is an ordering of the binary numeral system such that

two successive values differ in only one bit.

• The following table is a comparison of Decimal, Gray code and Binary:

Image source : https://www.dynapar.com/hs-fs/hubfs/uploadedImages/_Site_Root/Gray-

Code-Encoder-Output.jpg?width=219&height=319&name=Gray-Code-Encoder-Output.jpg

https://www.dynapar.com/hs-fs/hubfs/uploadedImages/_Site_Root/Gray-Code-Encoder-Output.jpg?width=219&height=319&name=Gray-Code-Encoder-Output.jpg
https://www.dynapar.com/hs-fs/hubfs/uploadedImages/_Site_Root/Gray-Code-Encoder-Output.jpg?width=219&height=319&name=Gray-Code-Encoder-Output.jpg

• Gray to Binary code conversion:

The truth table of Gray to Binary code conversion is:

Gray code number is the input and the corresponding Binary form is the Output. Decimal

number is taken for reference (in the table)

Decimal

Number

rep.

INPUT OUTPUT

A B C D W X Y Z

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 0 1 1 0

6 0 1 1 0 0 1 0 0

7 0 1 1 1 0 1 0 1

8 1 0 0 0 1 1 1 1

9 1 0 0 1 1 1 1 0

10 1 0 1 0 1 1 0 0

11 1 0 1 1 1 1 0 1

12 1 1 0 0 1 0 0 0

13 1 1 0 1 1 0 0 1

14 1 1 1 0 1 0 1 1

15 1 1 1 1 1 0 1 0

Truth Table reduction using K-Map:

1) W

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

10 1 1 1 1

Hence, W = A

2) X

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 0 0 0 0

10 1 1 1 1

X = (A’.B) + (A.B’)

Hence, X = A ⊕ B

A B

C D

A B

C D

3) Y

00 01 11 10

00 0 0 1 1

01 1 1 0 0

11 0 0 1 1

10 1 1 0 0

Y = (A’.B’.C) + (A’.B.C’) + (A.B.C) + (A.B’.C’)

Hence, on simplification Y = X ⊕ C

4) Z

00 01 11 10

00 0 1 0 1

01 1 0 1 0

11 0 1 0 1

10 1 0 1 0

Z = (A’.B’.C’.D) + (A’.B’.C.D’) + (A’.B.C’.D’) + (A’.B.C.D) +

(A.B.C’.D) + (A.B.C.D’) + (A.B’.C’.D’) + (A.B’.C.D)

Hence, on simplification, Z = Y ⊕ D

A B

C D

A B

C D

• Circuit Diagram:

The circuit can be implemented using three x-or gates

eSim Implementation

I. Main circuit Implementation

The main circuit has three parts:

1. Input

 The 4-bit Gray code input is of the form :- A B C D

We make use of the analog to digital converter to convert the input analog pulses into digital as

we make use of logic gates (that work only on digital signals)

2. Output

The 4-bit Binary output is of the form :- W X Y Z

We make use of the digital to analog converter to convert the signals back into analog and

compute the output

3. Logic Circuit

The circuit has been implemented from the previously derived logic circuit diagram.

Kicad to Ngspice Conversion

Here we make use of transient analysis:

Source Details:

Other fields are left as default.

Circuit simulation Output

I. NGSPICE PLOTS:

• Inputs:

Ngspice plot of A

Ngspice plot of B

Ngspice plot of C

Ngspice plot of D

• Outputs:

Ngspice plot of W

Ngspice plot of X

Ngspice plot of Y

Ngspice plot of Z

II. PYTHON PLOTS:

• Inputs:

Python plot of A

Python plot of B

Python plot of C

• Outputs:

Python plot of W

Python plot of D

Python plot of X

Python plot of Y

Python plot of Z

II. Sub circuit Implementation

Creating the Subcircuit:

Here, we make use of an additional AND gate for sub-circuit implementation. When both the

inputs of the AND gate is A, it gives the same (A) as the output. Hence, it does not affect the

functionality of the circuit.

Creating the circuit symbol using Library editor :

 Create new component -> Enter component name and Default reference designator (X -

since user defined)

 Draw the symbol, Generate netlist and save it (under eSim_Subckt library)

Create new project - new schematic:

Schematic design using subcircuit

Kicad to Ngspice Conversion:

We use the same transient analysis parameters as the main circuit, but in addition, we mention

the path of the sub circuit used:

Circuit simulation Output

I. Ngspice Plots

Inputs:

Ngspice plot of A

Ngspice plot of B

Ngspice plot of C

Ngspice plot of D

Outputs:

Ngspice plot of W

Ngspice plot of X

Ngspice plot of Y

Ngspice plot of Z

II. Python Plots

Inputs:

Python plot of A

Python plot of B

Python plot of C

Outputs:

Python plot of D

Python plot of W

Python plot of X

Python plot of Y

Result:

Both the circuits give the same output. Thus, a Gray to Binary code converter has been created

along with Main circuit and Subcircuit implementation. The outputs have also been verified.

References:

https://electricalworkbook.com/design-of-binary-to-gray-code-converter-circuit/

Python plot of Z

https://electricalworkbook.com/design-of-binary-to-gray-code-converter-circuit/

