

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the Participant - Ms. Sai Samyuktha N

Project Guide - Dr. Maheswari.R

Title of the Project - Design of a 4-bit BCD to Gray code Converter Ciruit using eSim

Theory

• **BCD** - BCD or Binary Coded Decimal is a number system which assigns a four-bit binary code to each digit from 0 through 9 in a decimal (base-10) numeral. The decimal numbers 1-9 are represented in their normal 4-bit binary form, but from the decimal number 10, we represent each number as it's 4-bit binary equivalent.

For example, the two-digit decimal number = 10 is divided into individual digits: 1 and 0. The binary representation of individual digits (4-bit)

1 = 0001 0 = 0000 Hence, 10 = 0001 0000

Decimal	Binary	BCD
0	0000 0000	0000 0000
1	0000 0001	0000 0001
2	0000 0010	0000 0010
3	0000 0011	0000 0011
4	0000 0100	0000 0100
5	0000 0101	0000 0101
6	0000 0110	0000 0110
7	0000 0111	0000 0111
8	0000 1000	0000 1000
9	0000 1001	0000 1001
10	0000 1010	0001 0000
11	0000 1011	0001 0001
12	0000 1100	0001 0010
13	0000 1101	0001 0011
14	0000 1110	0001 0100
15	0000 1111	0001 0101

The following is a comparison of Decimal, Binary and BCD:

Image source : <u>https://electricalengineering123.com/wp-content/uploads/2016/09/Binary-</u> <u>Coded-Decimal-Addition.jpg</u>

• *Gray code* - Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit. For example,

Decimal	Gray Code	Binary
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
5	0111	0101
6	0101	0110
7	0100	0111
8	1100	1000
9	1101	1001
10	1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

Image source : <u>https://www.dynapar.com/hs-fs/hubfs/uploadedImages/_Site_Root/Gray-</u> Code-Encoder-Output.jpg?width=219&height=319&name=Gray-Code-Encoder-Output.jpg

• BCD to Gray code conversion:

The truth table of BCD to Gray code conversion is:

BCD number is the input and the corresponding Gray code is the Output. Decimal number is taken for reference (in the table)

Decimal	INPUT				OUT	PUT		
number rep.	в3	в2	в1	в0	D3	D2	D1	DO
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1

Truth Table reduction using K-Map:

1) D3

B1 B0 B3 B2	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	X	X	X	X
10	1	1	X	X

2) D2

B1 B0 B3 B2	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	x	X	X	х
10	1	1	x	x

D2 = B2 + B3

3) D1

B1 B0 B3 B2	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	Х	Х	Х	Х
10	0	0	Х	X

D1 = (B2'.B1) + (B2.B1')

4) D0

B1 B0 B3 B2	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	Х	Х	Х	Х
10	0	1	Х	X

D1 = (B1'.B0) + (B1.B0')

• Circuit Diagram:

The circuit can be implemented using basic gates - and, nor, not

eSim Implementation

The main circuit has three parts:

1. Input

The 4-bit BCD input is of the form :- **B3 B2 B1 B0**

We make use of the analog to digital converter to convert the input analog pulses into digital as we make use of logic gates (that work only on digital signals)

2. Output

The 4-bit Gray code output is of the form :- D3 D2 D1 D0

We make use of the digital to analog converter to convert the signals back into analog and compute the output

3. Logic Circuit

The circuit has been implemented from the previously derived logic circuit diagram.

Kicad to Ngspice Conversion

Here we make use of transient analysis:

\sim
~
\sim

Source Details:

Analysis Source Details Ngspice Model Device Modeling Subcircuits	
Add parameters for pulse source v4	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	40
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	40
Enter period (seconds):	80
Add parameters for pulse source v1	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	20
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	20
Enter period (seconds):	40
✓ Add parameters for pulse source v2 ———————————————————————————————————	
Enter initial value(Volts/Amps):	0

kicadToNgspice-1

Analysis Source Details Ngspice Model Device Modeling Subcircuits	
Enter puise wiath (seconds):	20
Enter period (seconds):	40
Add parameters for pulse source v2	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	10
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	10
Enter period (seconds):	20
Add parameters for pulse source v3	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	5
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	5
Enter period (seconds):	10
	v)
	Convert

×

Other fields are left as default.

<u>Circuit simulation Output</u>

I. <u>NGSPICE PLOTS:</u>

• Inputs:

 \times

Ngspice plot of D3

Ngspice plot of D1

Ngspice plot of D0

II. <u>PYTHON PLOTS:</u>

Transient Analysis	
List of Nodes:	
b 0	
b1	
b2	
b 3	
d0	
☐ d1	
d2	
☐ d3	
netr1-pad2_	
List of Branches:	
a13#branch_1_0	
a13#branch_1_1	
a13#branch_1_2	
a13#branch_1_3	
v1#branch	
v2#branch	
v3#branch	
v4#branch	

• Inputs:

• Outputs:

References:

https://whatis.techtarget.com/definition/binary-coded-decimal

https://www.sanfoundry.com/plc-program-implement-bcd-gray-code-converter/