

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant: Gokul Jayan (20BCE1249)

Project Guide: Dr R. Maheswari

Title of the circuit: 3-Bit Asynchronous Up counter

Theory/Description:

In asynchronous up counter with JK Flip-Flops, a clock pulse drives first JK flip-flop FF0. Then its Output drives the second flip flop FF1 and output of second flip-flop drives the third flip-flop FF2. All the J and K inputs are connected to Logic 1.

The 3-bit asynchronous up counter consists of 3 JK flip flops. Overall propagation delay time is the sum of individual delays. Initially all flip flops are reset to produce 0. The output conditions are $Q_2 Q_1 Q_0 = 0 0 0$.

When the first clock pulse is applied, the FFO changes state on its negative edge. Therefore, $Q_2 \ Q_1 \ Q_0 = 0 \ 0 \ 1$. On the negative edge of second clock pulse flip flop FO toggles. Its output changes from 1 to 0. This being negative change, FF1 changes state. Therefore, $Q_2 \ Q_1 \ Q_0 = 0 \ 1 \ 0$. Similarly, the output of flipflop FF2 changes only when there is negative transition at its input when fourth clock pulse is applied. The output of the flip flops is a binary number equivalent to the number of clock pulses received. The output conditions are as shown in the truth table.

Counter State	Q2	Q1	Q0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

e-Sim Required Components

Asynchrono	Asynchronous Up counter				
Component	Туре				
d_jkff	JK flip flop				
pulse	Clock				
DC	DC Source for logic high				

e-Sim Schematic

Simulation Result

(i) NG Spice Waveforms:

clk (Clock Pulse)

m (Logic High)

(ii) Python Waveforms (for better visualization)

clk

m (Logic High)

Simulation Parameters for reference:

ToNgspice	-1				é
Analysis	Source Details	Ngspice Model	Device Modeling	Subcircuits	
Select An	alysis Type				
AC		DC		ANSIENT	
Start Tim Step Tim	e	0	Sec		~
Stop Tim	e	85	Sec		\sim
					Convert
					Convert

Transient Analysis

Source Details

Analysis	Source Details	Ngspice Model	Device Modeling	Subcircuits
- Add par	ameters for pulse so	ource v2		
Enter initial value(Volts/Amps):			0	
Enter pulsed value(Volts/Amps):			5	
Enter delay time (seconds):			5	
Enter rise time (seconds):			0	
Enter fall time (seconds):			0	
Enter pulse width (seconds):			5	
Enter period (seconds):			10	D
- Add par	ameters for DC sour	rce v1		
Enter v	alue(Volts/Amps):		5	

Conclusion:

Hence, designed and verified 3-bit asynchronous up counter using JK flip flops on eSim

References:

https://learn.circuitverse.org/docs/seq-msi/counters.html