VIT

. Vellore Institute of Technology
}=> 1 Trobe ! - <l 'l Z

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant: Arjun Bathla

Project Guide: Dr R. Maheswari

Title of the circuit: Cyclic Redundancy Check (7, 4) Decoder Circuit

Theory/Description:

In this circuit, a CRC (Cyclic Redundancy Check) decoder has been simulated, with data word
size (k) = 4 bits, and code word size (n) = 7 bits. This circuit can be used to decode parallelly
generated 4-bit data after transmitting it over an error prone channel. At the sender side, the
data word has to be encoded to detect any errors occurred during the transmission. On both
sender and receiver sides, a common divisor of size (n-k+1) = 4 bits is used for encoding and
decoding.

On the receiver side, the decoder generates a syndrome (remainder) of size (n-k) = 3 bits,
from the received code word. If this syndrome is zero, no error is detected in the received
code word and the extracted data word is accepted, otherwise error is detected and the
extracted data word is discarded. The extracted data word is essentially the first four bits of
the code word, starting from MSB.

In this decoder, the syndrome is generated using modulo 2 division, in which at every stage,
the respective dividend and divisor undergo the XOR operation. This method is illustrated in
Figure 1. The code words for the two cases are 1001_110 and 1000 110, and the divisor is
1011, same as that in the encoder. The 3-bit remainders in both the cases are called
syndromes. In case 1, since the syndrome is 000, the extracted data word is accepted, while
in case 2 it is discarded, since the syndrome is not 000.

https://esim.fossee.in/
https://esim.fossee.in/

Codeword [1 0 0 11 1 0 Codeword [1 0 0 01 1 0

Division ¢ Division ¢
1 o 0y O e A0ty AN
101w)10011104—codeword 1011)10001104—Codeword
g it My Al i HHE Mkl Y i
o Dl 0
00 0 000
e ottt At 1 11
L1 o Dy AR 01 o JARE 11O
TG TR T
0000 1000
00 1 11
Syndrome Syndrome
Dataword Dataword
accepted discarded
Figure 1: CRC (7, 4) Decoding
Dataword Codeword Dataword Codeword
0000 0000000 1000 1000101
0001 0001011 1001 1001110
0010 0010110 1010 1010011
0011 0011101 1011 1011000
0100 0100111 1100 1100010
0101 0101100 1101 1101001
0110 0110001 1110 1110100
0111 0111010 1111 IT11111

Figure 2: CRC (7, 4) Codebook

The circuit in this project assumes that the code word is being input in a parallel manner
instead of serial, eliminating the need for a shift register.

At each step in the division, we observe that if the dividend at that stage has MSB = 0, its
remaining 3 bits are XORed with 000, otherwise they are XORed with the last 3 bits of the
divisor. This will be true for any divisor where MSB = 1, which is a necessary condition for CRC
encoding as it uses modulo 2 division. Figure 2 shows the codebook for all possible 4-bit data
words. Since the minimum Hamming distance between any two code words is 3, this
technique can detect errors of up to 2 bits.

Essentially, the XOR operation with the last 3 bits of the dividend at each stage will be
performed after the last 3 bits of the divisor undergo the AND operation with the MSB of that
dividend. Figure 3a shows the schematic for the subcircuit. This subcircuit will be used 4 times,
one for each stage, in the main circuit.

Figure 3b shows the symbol of this subcircuit. Ports 1 through 4 are the four dividend bits
from MSB to LSB respectively. Ports 5 through 7 are the last three bits of the divisor
respectively, since the MSB will always be 1, eliminating the need for a separate port. Ports 8
through 10 are the three remainder bits from MSB to LSB respectively.

The remainder at each stage will act as the first three bits of the dividend for the next stage,
and the LSB for that dividend would be 0. The last three bits of the divisor will be the same at
each stage. The remainder obtained from the fourth stage will be the syndrome. The ‘accept’
output should be 1 only when the syndrome is 000, hence a 3-input NOR gate subcircuit is
used, for which the schematic and symbol are shown in Figures 4a and 4b respectively.

Circuit Diagram(s):

ULA

[ro -2

ULE 1

[rov -2 Nid a - 2
R e | LD S oy
ULF 1

[row ¢ Nid a - 2
2 e S T)
uiG 1

[rose -2 Nid a - 2
B e i Sy

&

PORF

Figure 3a: Modulo 2 division subcircuit schematic

Mod_2_Divider

1 ! pvp3
—2 1 pvp2
3 1 pvp1
—2 {pvDo REM2 B~

REM1 —2—
REMO |10

—32 1 pys2
—2 1 pvso
X

Figure 3b: Modulo 2 division subcircuit symbol

d_inverter

Figure 4a: 3-input NOR gate subcircuit schematic

3_nor

Figure 4b: 3-input NOR gate subcircuit symbol

Figure 5 shows the schematic of the main circuit. For an easy-to-understand simulation, the
divisor has been fixed to 1011, while the code word varies from 1001_000 to 1001_111, such
that the accept output can be cross-verified with the output in the case 1 of Figure 1.

=
f‘\’ plntle
= QZ.L -

s plot_vl -

U ,

. Zde_bridge_7 s ; od_Z _Divider
oo L TSR %) £ oeos -
2 e U2 gy |2 2 pypz - - B
3 3 oufT L8 3 | pynt ad_Z Divider
Y o) gy 4 pypo - REMZ —E——Ld pyps
—3 1 insg puts 2 REML |2 21 wvnz .
8 g - - BUts L3 REmp L0 E Y N ad_Z_Divider
7 iz ourz 4 3 | pvsz 4 ovon Remz B 1 fpvos
: . £ pysy - - : REME -2——2— pyD2 - - A
e . REMo L0 3 pynt - - CMod_Z2_Divider
T : Dvs2 . 4 DvD - REMZ S ; Vo3
BV REM1 Vo2
— pvs0 REMo L3 f gyt
= 5 pvsz 4 ovon Remz B
o R2 LI . . REM1L 2
7 I bvsp . - e REMo LU
ovs2 .
A3 ‘ ,—3 VL
[s
W
. adc_bridge_3 B
s LI ouTL :
2 f iy W3 gpp; 8
——{ n3 ouTs |8

Figure 5: CRC (7, 4) Decoder Schematic

- ¥

tlac bridge_1
it U l| QuTi

accept
B

Labels cw6 to cwO refer to the seven code word bits starting from MSB to LSB. Labels dv2 to
dvO refer to the last 3 bits of the common divisor. During simulation, dv2, dvl and dvO are
fixed to OV, 5V and 5V, i.e., the divisor is fixed as 1011. The signals cw6 through cw3 are fixed
to 5V, OV, OV and 5V, i.e., the first four bits are fixed to 1001, while the signal cw2, cw1 and
cwO will vary between 0OV and 5V, generating every possible combination for the code word
from 1001_000to 1001_111. Two ADC bridges are used to convert the analog signals to digital
signals at the input side. At the output side, a DAC bridge converts the digital ‘accept’ output
bit to analog signal, where 0 =0V and 1 =5V.

Results (Input, Output waveforms):

Figures 6a to 6¢ show the plots for dv2 to dvO. Figures 7a to 7g show the plots for cw6 to cwO.
Figure 8 shows the plot for ‘accept’. It can be verified that the ‘accept’ bit is 1 only when the
code word is 1001_110.

Figures 9a to 9d show the same plots using Python plot for a better visualization.

Figure 6a: Analog signal for dv2

Figure 6b: Analog signal for dv1

Figure 6¢: Analog signal for dv0

Figure 7a: Analog signal for cw6

Figure 7b: Analog signal for cw5

Figure 7c: Analog signal for cw4

Figure 7d: Analog signal for cw3

Figure 7e: Analog signal for cw2

Figure 7f: Analog signal for cw1l

Figure 7g: Analog signal for cw0

v(accept)

Figure 8: Analog signal for ‘accept’

pan/zoom, ¥=36.742 y=3.82399 Transient Analysis
List of Nodes:

dvid .
dvl .
dv2 o
] dwo

] dw1

D dw2 _
D dw3 _
7] net-_u13-pada_
D rm0 _
3] rmt o
] rmz2

List of Branches:
D al#branch_1_0

il

A € > Q=¥

Voltage(V)—->

2 D al#branch_1_1
D al#branch_1_2
] vi#branch
] v2#branch
1] va#branch
D v4#branch
D v5#branch
] v6#branch
01] v7#branch
] va#branch

T T T T
0 20 40 60 80 100 120 140 160
time-> Plot

Figure 9a: Analog signals for dv2 to dv0

x=21.2130 y=0.0817246 Transient Analysis

O
u H List of Hodes:

[] accept

I:‘ w2
ow3

[dvz

List of Branches:
I:‘ al#branch_1_0
["] vi#branch

I:‘ v2#branch

[] va#branch

[] va#branch

I:‘ v5#branch

[] we#branch

[] vz#branch

[] ve#branch

["] vo#branch

T T T T T I:‘ v10#branch

time--> Plot

Figure 9b: Analog signals for cw6 to cw3

Transient Analysis
List of Modes:

I:‘ accept

w2
[ows

[dvz

List of Branches:
I:‘ a3#branch_1_0
[1 vi#branch
[] va2#branch
[] va#branch
[va#branch
[vs#branch
I:‘ vé#branch
[v7#branch
[] va#branch
[] va#branch

T T T T T [] vio#branch

time--> Plot

Figure 9c: Analog signals for cw2 to cw0

I:‘ cwi N
[ewt _

w4 o
owd .
cw6 .
[dvo -
O dvt -

ol
owl

I:‘ owrd o
I:‘ ows N
I:‘ ot N
[dvo _
R N

Transient Analysis

a« 6 ’ ‘*’ Q E M =) List of Nodes:

accept J—
[cwn _
51 e J—
[ew2

I:‘ ow3

[owa [
47 [cws -
[cwe -
[dvo -
[dn -
[]dv2

List of Branches:

I:‘ a3#branch_1_0
I:‘ vi#branch .
I:‘ v2#branch .
[] va#branch
[va#branch
[] vs#branch
["] ve#branch
["] v7#branch
["] va#branch
0 — [] va#branch

w
L

Voltage(V)-->

[i¥]
L

T T T T T T T T T [vio#branch
0 10 20 30 40 50 60 70 80

time—-> Plot

Figure 9d: Analog signal for ‘accept’

Simulation Parameters for reference:

- Add parameters for DC sourcevl ———————————, ~ Add parameters for pulse source vé

‘ Enter value(Volts/Amps): |5 | | Enter initial value(Volts/Amps): I:l
" ' Enter pulsed value(VoRs/Amp):
- Add parameters for DC source v2 —————, T TIZ1E L2007 6 RS

‘ Enter value(Volts/Amps): |D | | Enter delay time (seconds):
- Add parameters for DC sourcev3 ————————— ELET IR I T I:l
‘ Enter value(Volts/Amps): |D | | Enter fall time (seconds): I:l
~ Add parameters for DC source v¢ —————, VT TIFE A0 FERIT S
‘ Enter value(Volts/Amps): |5 | | Enter period (seconds):

~ Add parameters for pulse source vy ———, ~ Add parameters for pulse source v7

Enter initial value(Volts/Amps): I:l Enter initial value(Volts/Amps): I:l

Enter pulsed value(Volts/Amps): Enter pulsed value(Volts/Amps):
Enter delay time (seconds):
I:l Enter rise time (seconds): I:l

Enter fall time (seconds): I:l Enter fall time (seconds): I:l

Enter delay time (seconds):

Enter rise time (seconds):

Enter pulse width (seconds): 0 Enter pulse width (seconds):
Enter period (seconds):

Enter period (seconds):

Figure 10a Figure 10b

-~ Add parameters for DC source v8

Enter value(Volts/Amps): 0

~ Add parameters for DC source vo

Enter value(Volts/Amps): |5

~ Add parameters for DC source v10

Enter value(Volts/Amps): |5

Figure 10c

Source/Reference(s):

https://cse.iitkgp.ac.in/~ksrao/pdf/iti-18/slide-3.pdf

Pages 58-61

https://cse.iitkgp.ac.in/~ksrao/pdf/iti-18/slide-3.pdf

