Title:- 4 BIT ARITHMETIC AND LOGICAL UNIT

Theory :-

Arithmetic Logic Unit is a common operational unit with number of storage registers connected to it, using which it performs micro operations. To perform a micro operation, the contents of specified registers are placed inthe inputs of the common ALU. The ALU performs an operation and the result of the operation is then transferred to a destination register. The ALU is a combinational circuit so that the entire registers transfer operation from the source register through the ALU and the destination register can be performed during one clock pulse period.

One stage ALU

Operation select					
S_{2}	S_{1}	S_{0}	$C_{\text {in }}$	Operation	Function
0	0	0	0	$F=A$	Transfer A
0	0	0	1	$F=A+1$	Increment A
0	0	1	0	$F=A+B$	Addition
0	0	1	1	$F=A+B+1$	Add with carry
0	1	0	0	$F=A+\bar{B}$	Subtract with borrow
0	1	0	1	$F=A+\bar{B}+1$	Subtraction
0	1	1	0	$F=A-1$	Decrement A
0	1	1	1	$F=A$	Transfer A
1	0	0	\times	$F=A \wedge B$	AND
1	0	1	\times	$F=A \vee B$	OR
1	1	0	\times	$F=A \oplus B$	XOR
1	1	1	\times	$F=\bar{A}$	Complement A

Truth Table of ALU

Arithmetic Unit :-
The arithmetic operations in the table canbe implemented in one composite arithmeticcircuit. The basic component of an arithmetic circuit is a full adder. By controlling the data input to the adder it is possible to obtain different types of arithmetic operations. Thediagram of the 4-bitarithmeticcircuitis shownin figure 1. It has four full adder circuits that constitute the 4 bit adder and 4 multiplexersforchoosing multipleoperations. Therearetwo 4bitinputs A and B and 4 bit output D.

Figure 1 : Schematic of 4-bit Arithmetic Unit

Logic Unit:-

Logic micro operations specify binary operations forstrings of bits stored in registers. These operations consider each bit of registers separately and treat themasbinary variables. Figure2showsonestage of acircuitthatgenerates the four basic logic micro operations. Itconsists of 4 gates and a multiplexer each of the fourlogicoperations is generatedthroughagate that performsthe required logic. The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputsS1 andS2choose one ofthedatainputs of the multiplexers and directitvalues to the output. Figure shows onetypical stage of logicalunit.

Figure 1: Schematic of 1-bit Logic Unit
A and B are the 4 bit word inputs ALU
$\mathrm{A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0$ and $\mathrm{B} 3, \mathrm{~B} 2, \mathrm{~B} 1, \mathrm{~B} 0$ are the bits. A 3 and B 3 are the MSBs .
$\mathrm{S} 2, \mathrm{~S} 1, \mathrm{~S} 0$ are the selection inputs. S 2 selects the arithmetic operation for ' 0 ' andlogic operation for ' 1 '. $\mathrm{S} 1, \mathrm{~S} 0$ are used to select various operations in arithmetic and logic blocks. Cin is the input carry to arithmetic circuit.
$\mathrm{f} 3, \mathrm{f} 2, \mathrm{f1}, \mathrm{f0}$ are the output bits . Cout is the output carry.

Schematic Diagram of 4 bit ALU:-

Subcircuit schematic for 74153 dual 4:1 mux:

Subcircuit Schematic for 74157 quad 2:1 mux:

Subcircuit Schematic for 4 bit FA :-

Subcircuit Schematic for1 bit LogicUnit:

$+$

Simulation Results:-

Input:-
$\mathrm{A}[3: 0]-1001$

A	Value	Voltage Source	Value (v)
3	1	V 4	5
2	0	V 3	0
1	0	V 2	0
0	1	V 1	5

Input	Voltage source
S 2	V 9
S 1	V 10
S 0	V 11
Cin	V 12

Output when S2 = ‘ 0 ' -- v9 = 0v

$$
\begin{array}{ll}
S 1=‘ 0 ‘--v 10=0 v & \text { operation performed } \\
S 0={ }^{\prime} 1^{\prime}--v 11=5 v & \text { is ADD with carry } \\
C i n=‘ 1^{\prime}--v 12=5 v & F=A+B+1
\end{array}
$$

$\mathrm{F}[3: 0]-0100$ Cout = ' 1 '

NGSPICE PLOTS:-

Cout

f2

PYTHON PLOTS:-

f0

f2

f3

Cout

Output when $\mathrm{S} 2=$ ' 0 ' $-\mathrm{v} 9=0 \mathrm{v}$

$$
\begin{array}{lr}
\mathrm{S} 1={ }^{\prime} 1^{\prime}--\mathrm{v} 10=5 \mathrm{v} & \text { operation } \\
\mathrm{S} 0={ }^{\prime} 0 '-\mathrm{v} 11=0 \mathrm{v} & \text { is SUB } \\
\mathrm{Cin}={ }^{\prime} 1^{\prime}--\mathrm{v} 12=5 \mathrm{v} & \mathrm{~F}=\mathrm{A}-\mathrm{B}
\end{array}
$$

$\mathrm{F}[3: 0]-1111 \quad$ Cout $=$ ' 0 '

NGSPICE PLOTS:-
Cout

V

f2

f3

PYTHON PLOTS:-

Cout

Output when $\mathrm{S} 2=$ ' 1 ' $-\mathrm{v} 9=0 \mathrm{v}$

$S 1=' 1 '--v 10=5 v$	operation performed
$S 0=$ ' 0 ' $-\mathrm{v} 11=0 \mathrm{v}$	is XOR
$\mathrm{Cin}=$ ' X	

F[3:0]--

NGSPICE PLOTS:-

f2

f3

PYTHON PLOTS:-

f1

RESULTS:-

S2	S1	S0	Cin	Cout	$\mathrm{F}[3: 0]$ f 3 f 41 f0	Operatiion
0	0	0	0	0	1001	$\mathrm{~F}=\mathrm{A}$
0	0	0	1	0	1010	$\mathrm{~F}=\mathrm{A}+1$
0	0	1	0	1	0011	$\mathrm{~F}=\mathrm{A}+\mathrm{B}$
0	0	1	1	1	0100	$\mathrm{~F}=\mathrm{A}+\mathrm{B}+1$
0	1	0	0	0	1110	$\mathrm{~F}=\mathrm{A}-\mathrm{B}-1$
0	1	0	1	0	1111	$\mathrm{~F}=\mathrm{A}-\mathrm{B}$
0	1	1	0	1	1000	$\mathrm{~F}=\mathrm{A}-1$
0	1	1	1	1	1001	$\mathrm{~F}=\mathrm{A}$
1	0	0	X	X	1000	$\mathrm{~F}=\mathrm{A}$ AND B
1	0	1	X	X	1011	$\mathrm{~F}=\mathrm{A} \mathrm{OR} \mathrm{B}$
1	1	0	X	X	0011	$\mathrm{~F}=\mathrm{A}$ XOR B
1	1	1	X	X	0110	$\mathrm{~F}=$ NOT A

References:-

1) https://pdfs.semanticscholar.org/16ab/11d6142791a1366e69665849188839128598.pdf
