

Circuit Simulation Project

Title: Design and Implementation of Instrumentation Amplifier.

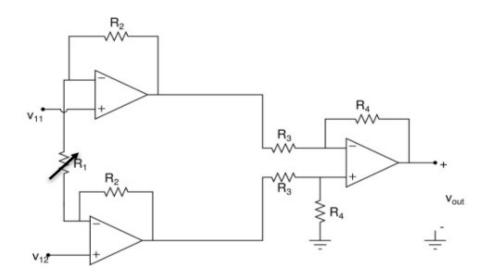
Student Name: Ganderla Chaithanya

University Name: Rajiv Gandhi university of knowledge technology.

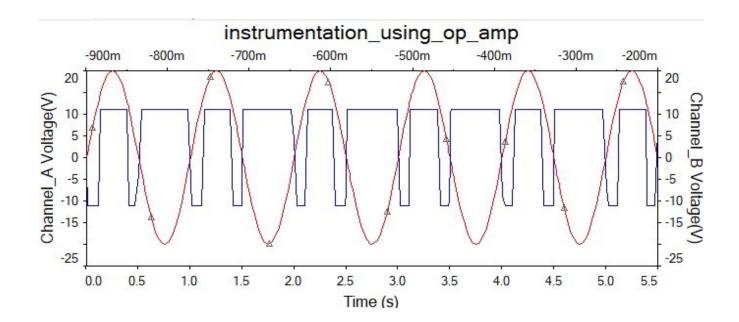
Problem Statement:

To design, simulate, and validate an Instrumentation Amplifier using the eSim tool ensuring high gain, high input impedance, and low output impedance for accurate low-level signal measurement.

Theory/Description:


An Instrumentation Amplifier (IA or In-Amp) is a type of differential amplifier that is specifically designed for high-precision signal measurement applications. It is widely used in biomedical signal processing (ECG, EEG), industrial sensor interfacing, and low-level signal amplification due to its high gain accuracy, low noise, high input impedance, and excellent commonmode rejection ratio (CMRR).

Theory of Operation


An instrumentation amplifier typically consists of three operational amplifiers (Op-Amps) arranged in a two-stage configuration:

- The **first stage** consists of **two buffer amplifiers** (Op-Amp 1 and Op-Amp 2) with high input impedance to prevent loading the signal source.
- The **second stage** is a **differential amplifier** (Op-Amp 3) that subtracts the signals from the two inputs and provides the final amplified output.

Circuit Diagram:

Expected waveforms:

Sources:

Title of the paper: Design and Performance analysis of Instrumentation Amplifier at Nanoscale.

Name of the Journal: International journal of Advance Reasearch ,Ideas And Innovations and technology.

Author: Dr.M. Nizamuddin

Source Link: https://www.ijariit.com/manuscript/design-performance-

analysis-instrumentation-amplifier-nanoscale/