Title : A 2-Bit Binary Adder Subtractor Circuit

Theory

In Digital Circuits, A Binary Adder-Subtractor is one which is capable of both addition and subtraction of binary numbers in one circuit itself. The operation being performed depends upon the binary value the control signal holds. It is one of the components of the ALU (Arithmetic Logic Unit).

Circuit Diagram

Truth Table

		Input			Output					
V(const) V(d)		V(c)	V(b)	V(a)	Carry	Sum1	Sum0			
0	0	0	0	0	0	0	0			
0	0	0	0	1	0	0	1 1 0 0 1			
0	0	0 0 1 1	1 1 0 0	0	0	0				
0	0			1	0	1				
0	0			0	0	1				
0	0			1	0	1				
0	0	1	1	0	0	1	1			
0	0	1	1	1	1	0	0			
0	1	0	0	0	0	1	0			
0	1	0	0	1	0	1	1			
0	1	0	1	0	0	1	1			
0	1	0	1	1	1	0	0			
0	1	1	0	0	1	0	0			
0	1	1	0	1	1	0	1			
0	1	1	1	0	1	0	1			
0	1	1	1	1	1	1	0			
1	0	0	0	0	1	0	0			
1	0	0	0	1	0	1	1			
1	0	0	1	0	1	0	1			
1	0	0	1	1	1	0	0			
1	0	1	0	0	0	1	0			
1	0	1	0	1	0	0	1			
1	0	1	1	0	0	1	1			
1	0	1	1	1	0	1	0			
1	1	0	0	0	1	1	0			
1	1	0	0	1	1	0	1			
1	1	0	1	0	1	1	1			
1	1	0	1	1	1	1	0			
1	1	1	0	0	1	0	0			
1	1	1	0	1	0	1	1			
1	1	1	1	0	1	0	1			
1	1	1	1	1	1	0	0			

Schematic Diagram

Kicad to NgSpice

Add parameters for pulse source v2	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0. 1u
Enter rise time (seconds):	0.1u
Enter fall time (seconds):	0.1u
Enter pulse width (seconds):	10
Enter period (seconds):	2u
∠ Add parameters for pulse source v1	
Enter initial value(Volts/Amps):	5
Enter pulsed value(Volts/Amps):	0
Enter delay time (seconds):	0.1u
Enter rise time (seconds):	0.1u
Enter fall time (seconds):	0.10
Enter pulse width (seconds):	2u
Enter period (seconds):	4u
	ти
- Add parameters for pulse source v4	
Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0. 1u
Enter rise time (seconds):	0.1u
Enter fall time (seconds):	0.1u
Enter pulse width (seconds):	4u
Enter period (seconds):	80
- Add parameters for pulse source v3	
Enter initial value(Volts/Amps):	5
Enter pulsed value(Volts/Amps):	0
Enter delay time (seconds):	0.1u
Enter rise time (seconds):	0.10
Enter fall time (seconds):	0.1u
Enter pulse width (seconds):	8u
Enter period (seconds):	16u
Add parameters for pulse source v3	
Enter initial value(Volts/Amps):	5
Enter pulsed value(Volts/Amps):	0
Enter delay time (seconds):	0.1u
ence deay dife (accorda).	0.10

Enter rise time (seconds):	0.1u
Enter fall time (seconds):	0.1u
Enter pulse width (seconds):	8u
Enter period (seconds):	16u
Add parameters for pulse source v5	

Enter initial value(Volts/Amps):	0	
Enter pulsed value(Volts/Amps):	1	
Enter delay time (seconds):	0.1u	
Enter rise time (seconds):	0.1u	
Enter fall time (seconds):	0.1u	
Enter pulse width (seconds):	16u	
Enter period (seconds):	32u	

V(B)

V(C)

V(D)

🔳 tr	an1: * c:\	users\ssr	20\esim-work	space\addsub\a	addsub.cir												- 0	×
¥										- v(cons	t)							
1.	0				1		1											
0.	9																	
	17																	
	8																	
	7																	
	6																	
0.																		
υ.	5																	
0.																		
	3																	
	2																	
	1																	
0.	0 L _	2.	0 4	.0 6	.0 8	.0 10	.0 12	.0 14	.0 16	.0 18	.0 20	0 _22	.0 24	.0 26	.0 28	0 30	.0 :	32.0
							time				us					0		

V(const)

<u>Output</u>

V(Sum0)

V(carry)

Conclusion

Thus we have studied how an adder subtractor circuit works and implemented a 2-bit binary adder subtractor circuit using eSim.

References

https://www.geeksforgeeks.org/4-bit-binary-adder-subtractor/