Title : A 2-Bit Binary Adder Subtractor Circuit

Theory

In Digital Circuits, A Binary Adder-Subtractor is one which is capable of both addition and subtraction of binary numbers in one circuit itself. The operation being performed depends upon the binary value the control signal holds. It is one of the components of the ALU (Arithmetic Logic Unit).

Circuit Diagram

Truth Table

Input					Output		
V(const)	V(d)	V (c)	V(b)	V (a)	Carry	Sum1	Sum0
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	1
0	0	0	1	1	0	1	0
0	0	1	0	0	0	1	0
0	0	1	0	1	0	1	1
0	0	1	1	0	0	1	1
0	0	1	1	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	1	0	1	1
0	1	0	1	0	0	1	1
0	1	0	1	1	1	0	0
0	1	1	0	0	1	0	0
0	1	1	0	1	1	0	1
0	1	1	1	0	1	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	1	0	0
1	0	0	0	1	0	1	1
1	0	0	1	0	1	0	1
1	0	0	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	0	1	0	0	1
1	0	1	1	0	0	1	1
1	0	1	1	1	0	1	0
1	1	0	0	0	1	1	0
1	1	0	0	1	1	0	1
1	1	0	1	0	1	1	1
1	1	0	1	1	1	1	0
1	1	1	0	0	1	0	0
1	1	1	0	1	0	1	1
1	1	1	1	0	1	0	1
1	1	1	1	1	1	0	0

Schematic Diagram

Kicad to NgSpice

Add parameters for pulse source v2
Enter initial value(Volts/Amps):
Enter pulsed value(Volts/Amps):
Enter delay time (seconds):
Enter rise time (seconds):
Enter fall time (seconds):
Enter pulse width (seconds):
Enter period (seconds):

0
5
$0.1 u$
$0.1 u$
$0.1 u$
$1 u$
$2 u$

Add parameters for pulse source v1
Enter initial value(Volts/Amps):

5
0
$0.1 u$
$0.1 u$
$0.1 u$
$2 u$
$4 u$

Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	5
Enter delay time (seconds):	0.14
Enter rise time (seconds):	0.14
Enter fall time (seconds):	0.1 u
Enter pulse width (seconds):	40
Enter period (seconds):	8 u

Add parameters for pulse source v3

Enter initial value(Volts/Amps):

5
0
$0.1 u$
$0.1 u$
$0.1 u$
$8 u$
$16 u$

Enter initial value(Volts/Amps):	0
Enter pulsed value(Volts/Amps):	1
Enter delay time (seconds):	0.14
Enter rise time (seconds):	0.14
Enter fall time (seconds):	0.14
Enter pulse width (seconds):	16u
Enter period (seconds):	32u

Input

V(A)

V(C)

V(D)

V(const)

Output

V(Sum0)

V(Sum1)

V(carry)

Conclusion

Thus we have studied how an adder subtractor circuit works and implemented a 2-bit binary adder subtractor circuit using eSim.

References

https://www.geeksforgeeks.org/4-bit-binary-adder-subtractor/

