Title:- $\quad 74153$ A Dual 4 line to 1 line Multiplexer

Theory :-

The multiplexer, shortened to "MUX" or "MPX", is a combinational logic circuit designed to switch one of several input lines through to a single common output line by the application of a control signal.

The Function of a $4: 1$ Multiplexer with A, B, C, D as input lines and a, b as select inputs. Output Q is selected among A, B, C, D based on select inputs a, b.

b	a	Q
0	0	A
0	1	B
1	0	C
1	1	D

Here 74153 is a dual 4 to 1 multiplexer with two select inputs (S1,S0) common to both the multiplexers.
$a 0, a 1, a 2, a 3$ are the inputs and $Y a$ is the output , EA is the enable to the MUX1. $\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{~b} 3$ are the inputs and Yb is the output ,EB is the enable to the MUX2. $E A, E B$ are active low enable inputs.

S1	S0	EA	Ya	EB	Yb
x	x	1	0	1	0
0	0	0	$a 0$	0	b0
0	1	0	$a 1$	0	$b 1$
1	0	0	$a 2$	0	b 2
1	1	0	a 3	0	b 3

NOTE :- Here in E-SIM software, no need to connect Vcc (pin 16) and GND (pin 8) pins to Dc source and gnd respectively, you can leave them unconnected using NO CONNECT symbol . This is because in circuit simulation softwares, we use BASIC GATES (AND, NAND etc.) they don't need Vcc and GND. As in manufacturing an IC , they use MOSFETs to implement those GATES , there MOSFETs require Vcc and Gnd

Schematic Diagram :-

Subcircuit Schematic for 74153 :

Subcircuit Schematic for " 4_and" gate used in 74153 subcircuit :

Subcircuit Schematic for " 4_OR" gate used in 74153 subcircuit :

Subcircuit Schematic for " 3_and" gate used in 4_and gate :

Simulation Results :-
Inputs to MUX 1

Ngspice plots
aO(v4)
a1(v5)

a2(v6)

a3(v7)

Inputs to MUX 2
b0(v1)
b1 (v2)

b2(v3)

V
5.0

b3(v8)

V
1.0\begin{tabular}{\|l
\hline
\end{tabular}
0.8

OUTPUTS when $\quad s 0={ }^{\prime} 0^{\prime}$ and $s 1==^{\prime} 0^{\prime}$
$s 0(v 12=0 v)$

ya

$s 1(v 11=0 v)$

yb

OUTPUTS when $\quad s 0={ }^{\prime} 1^{\prime}$ and $s 1={ }^{\prime} 0^{\prime}$
$s 0(v 12=5 v)$
$s 1(v 11=0 v)$

ya

yb

$\mathrm{s} 0(\mathrm{v} 12=0 \mathrm{v})$

| V |
| :--- | | 1.0 |
| :--- |
| 0.8 |

ya

$s 1(v 11=5 v)$

yb

OUTPUTS when $\quad s 0={ }^{\prime} 1^{\prime}$ and $s 1==^{\prime} 1^{\prime}$
$s 0(v 12=5 v)$

$s 1(v 11=5 v)$

уа
yb

PYTHON PLOTS

Inputs to MUX 1

aO(v4)

a2(v6)

a1(v5)

a3(v7)

Inputs to MUX 2

b0(v1)

b2 (v3)

b1(v2)

b3 (v8)

OUTPUTS when $\mathrm{s} 0==^{\prime} 0^{\prime}$ and $\mathrm{s} 1={ }^{\prime} 0^{\prime}$

$s 0(v 12=0 v)$

ya

$s 1(v 11=0 v)$

yb

OUTPUTS when $\quad \mathrm{s} 0==^{\prime} 0^{\prime}$ and $\mathrm{s} 1=^{\prime} 1^{\prime}$

ya

$s 1(v 11=0 v)$

OUTPUTS when $s 0==^{\prime} 0^{\prime}$ and $s 1=1^{\prime}$
$s 0(v 12=0 v)$

ya

$s 1(v 11=5 \mathrm{v})$

OUTPUTS when $s 0==^{\prime}$ and $s 1=^{\prime} 1^{\prime}$
$\mathrm{s} 0(\mathrm{v} 12=5 \mathrm{v})$

yb

REFERENCES:-

1) https://www.electronicshub.org/multiplexerandmultiplexing/
2)https://www.ti.com/lit/ds/symlink/sn74ls153.pdf
