Analysis of Astable Multivibrator using Transistors

Vishnu Mohan, Assistant Professor (EI), College of Engineering Vadakara - 673 105

May 3, 2019

Astable multivibrator is a class of multivibrators in which the output state is not stable. It has two quasi stable states (logic LOW and HIGH). This circuit¹ is also known as free running multivibrator as it does not require external triggering for its operation.

1 Schematic Diagram

The schematic of astable multivibrator using transistors drawn in eSim is as shown below.

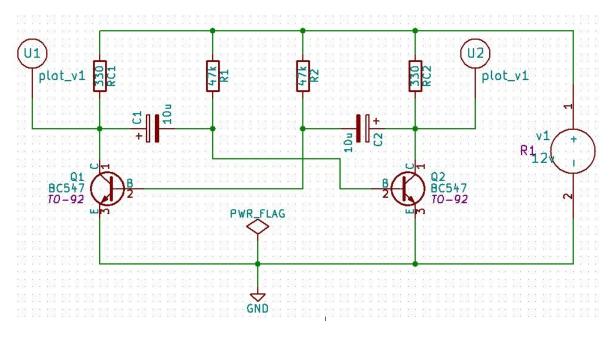


Figure 1: Astable Multivibrator

2 Theory

This circuit is wired using two BC547 npn transistors Q_1 and Q_2 , two collector resistances R_{C1} and R_{C2} (330 Ω), two base resistances R_1 and R_2 (47k Ω) and two collector to base capacitances C_1 and C_2 (10 μ F).

All the circuit elements are connected as in the schematic shown in figure 1.

Due to minute variations during manufacturing, no two transistors can be made identical. Assume that Q_1 conducts more. This makes Q_1 ON. When Q_1 is ON, the collector voltage of Q_1 (i.e., V_{C1}) drops to V_{CEsat} (0.2V approx.). Since, it is coupled to the base of the transistor Q_2 , it forces Q_2 to switch to OFF state.

At the same time, the capacitor C_1 charges to V_{CC} (+12V here) through the resistor R_1 with a time constant of R_1C_1 . This charging increases the voltage across the capacitor C_1 . When this voltage is sufficient enough to turn ON Q_2 , Q_2 will become ON and it forces Q_1 to go to OFF state. This process continues and the voltage at the collector terminal of both the transistors switches from V_{CEsat} to V_{CC} .

3 Simulation Results

Ngspice and Python plots obtained after simulation are shown in figures 2 to 7.

¹S Salivahanan, N Suresh Kumar, A Vallavaraj, *Electronic Devices and Circuits*, Tata McGraw Hill, New Delhi, 1998

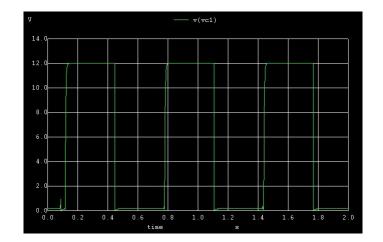


Figure 2: Collector voltage of Q_1

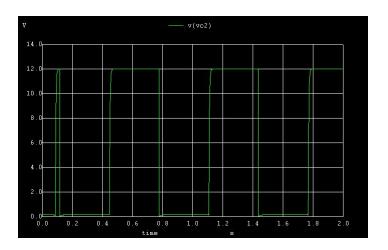


Figure 3: Collector voltage of Q_2

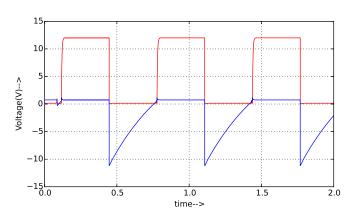


Figure 4: Collector voltage of Q_1 (Red) and Base voltage of Q_2 (Blue)

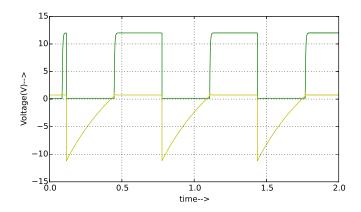


Figure 5: Collector voltage of Q_2 (Green) and Base voltage of Q_1 (Yellwo)



Figure 6: Collector voltage of Q_1 (Red) and Collector voltage of Q_2 (Green)

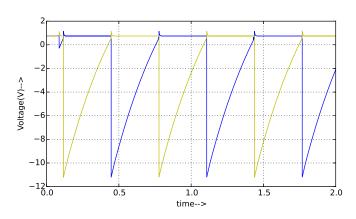


Figure 7: Base voltage of Q_1 (Yellow) and Collector voltage of Q_2 (Blue)